31,538 research outputs found

    HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    Get PDF
    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles

    Texture control in a pseudospin Bose-Einstein condensate

    Full text link
    We describe a wavefunction engineering approach to the formation of textures in a two-component nonrotated Bose-Einstein condensate. By controlling the phases of wavepackets that combine in a three-wave interference process, a ballistically-expanding regular lattice-texture is generated, in which the phases determine the component textures. A particular example is presented of a lattice-texture composed of half-quantum vortices and spin-2 textures. We demonstrate the lattice formation with numerical simulations of a viable experiment, identifying the textures and relating their locations to a linear theory of wavepacket interference.Comment: 4 pages, 5 figures, REVTeX4-

    A New Z=0 Metagalactic Ultraviolet Background Limit

    Get PDF
    We present new integral-field spectroscopy in the outskirts of two nearby, edge-on, late-type galaxies to search for the H alpha emission that is expected from the exposure of their hydrogen gas to the metagalactic ultraviolet background (UVB). Despite the sensitivity of the VIRUS-P spectrograph on the McDonald 2.7 m telescope to low surface brightness emission and the large field of view, we do not detect H alpha to 5 sigma upper limits of 6.4 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in UGC 7321 and of 25 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in UGC 1281 in each of the hundreds of independent spatial elements (fibers). We fit gas distribution models from overlapping 21 cm data of HI, extrapolate one scale length beyond the HI data, and estimate predicted H alpha surface brightness maps. We analyze three types of limits from the data with stacks formed from increasingly large spatial regions and compare to the model predictions: (1) single fibers, (2) convolution of the fiber grid with a Gaussian, circular kernel (10('') full width at half-maximum), and (3) the co-added spectra from a few hundred fibers over the brightest model regions. None of these methods produce a significant detection (>5 sigma) with the most stringent constraints on the Hi photoionization rate of Gamma(z = 0) < 1.7 x 10(-14) s(-1) in UGC 7321 and Gamma(z = 0) < 14 x 10(-14) s(-1) in UGC 1281. The UGC 7321 limit is below previous measurement limits and also below current theoretical models. Restricting the analysis to the fibers bound by the HI data leads to a comparable limit; the limit is Gamma(z = 0) < 2.3 x 10(-14) s(-1) in UGC 7321. We discuss how a low Lyman limit escape fraction in z similar to 0 redshift star-forming galaxies might explain this lower than predicted UVB strength and the prospects of deeper data to make a direct detection.U.S. Government NAG W-2166National Science FoundationUT David BrutonTexas Norman Hackerman Advanced Research Program 003658-0295-2007Cynthia and George Mitchell FoundationMcDonald Observator

    Bayesian analysis of endogenous delay threshold models

    Get PDF
    We develop Bayesian methods of analysis for a new class of threshold autoregressive models: endogenous delay threshold. We apply our methods to the commonly used sunspot data set and find strong evidence in favor of the Endogenous Delay Threshold Autoregressive (EDTAR) model over linear and traditional threshold autoregressions

    Cooled Infrared Dichroic Beamsplitters and Filters for the MIRI Spectrometer and Imager (5-29µm)

    Get PDF
    The spectral design and fabrication of cooled (7K) mid-infrared dichroic beamsplitters and bandpass filter coatings for the MIRI spectrometer and imager are described. Design methods to achieve the spectral performance and coating materials are discussed

    Phytocannabinoids as novel therapeutic agents in CNS disorders

    Get PDF
    The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB1 receptors by the major pCB, Δ9-tetrahydrocannabinol (Δ9-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ9-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ9tetrahydrocannabivarin (Δ9-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ9-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ9-THC pCB-based medicines
    • …
    corecore